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Abstract-Fiber micro-buckling is studied within the context ofa two-dimensional (lamellar) model.
A bifurcation approach, which rigorously accounts for finite strains and material nonlinearity in
both constituents, is employed to examine the possibility of shear and extensional micro-buckling
modes. Numerical results for a range of material and geometric parameters are presented, and an
asymptotic bifurcation condition is developed for long wavelength shear modes. It is found that
shear modes are preferred at higher fiber volume fractions and extensional modes at lower fiber
fractions. However, the transition fiber volume fraction, which depends strongly on material non­
linearity, may be higher than previously expected. The distinction between mechanical loading and
lhermalloading (where one constituent goes into tension and one into compression) is also touched
upon briefly.

I. INTRODUCTION

Failure in fiber-reinforced composites can occur in a variety of ways, depending on the
loading being sustained. One failure mode postulated to occur under compression parallel
to the fibers is fiber micro-buckling[1]. The earliest analysis of this phenomenon appears to
be that by Rosen[2], who treated the composite as consisting of two-dimensional laminae
and approximated the deformation as that ofa beam on an elastic foundation. The buckling
condition was based on an energy criterion. Chung and Testa[3] also considered a lamellar
structure and performed a bifurcation style analysis in the spirit of Biot[4]. While they took
account of finite deformations in the matrix, they continued to treat the fiber as a beam.
Three-dimensional treatments of fiber buckling have also been pursued[5-7]. Inevitably,
these approaches involve approximating the fiber as a one-dimensional continuum, and
they sometimes neglect fiber interactions or tensile deformation in the matrix.

Clearly, a full understanding of micro-buckling will require an adequate account of
the three-dimensionality of the problem. Tn this paper, however, we take the view that a
more precise treatmenl of the relevant buckling modes in a compressed lamellar solid can
give qualitative insight into a number of aspects of micro-buckling. The method employed
here is similar to that used by Hill and Hutchinson[8] to investigate bifurcation phenomena
in a solid subjected to plane strain tension. Their method was recently extended in Refs
[9-11] to solve several bimaterial problems. Studying the micro-buckling problem enables
us to consider a number of issues including: in-phase (shear) vs out-of-phase (extensional)
buckling; the existence of long wavelength modes; the effect of material nonlinearity; and,
the distinction between mechanical and thermal loading.

2. FIELD EQUATIONS

The composite, idealized as an infinite layered solid, is shown schematically in Fig. I.
The materials constituting the perfectly bonded alternating layers, labelled A and B, are
taken to be time independent and incompressible. Up to the current instant, the solid has
been subjected to a uniform in-plane compression parallel to the layers. With regard to
incremental deformations from the current state, the materials are assumed to be ortho­
tropic, with stress and strain rates related according to
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Fig. 1. Schematic of layered solid under compression.
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(1)

where ejj are Cartesian components of the Eulerian strain rate, D(1ij/Dt are the components
of the Jaumann derivative of the true (Cauchy) stress, and subscripts i and j take on the
values 1 and 2. The materials are incrementally isotropic when the moduli p.* and p. are
equal. The true stresses in the XI-X2 plane at the current instant are taken to be (111 == (J

(< 0) and (122 = 0 (plane strain, uniaxial compression). Note that (1, p. and p.* are, in general,
different in A and B.

By virtue of incompressibility, the velocities Vi (displacement increments) are derivable
from a stream function l/J (x 1> x 2) according to

Incremental equilibrium is expressed most conveniently in terms of the nominal stress
rates (see Ref. [8] for more details). With the nominal stress rates written in terms of the
velocities and, thus, in terms of l/J, one finds that the incremental deformations satisfy
equilibrium if

(2)

Conditions which enforce continuity of nominal traction rates and velocities at the
interfaces are

[[(p. - ~(1) {~:~ - ~:~}]J = 0

[[(
4P.* - P. - ~ (1) iJ3l/J + (p. - ~ (1) iJ3tjJ JJ = 0

2 iJX~iJX2 2 iJx~

[[::JJ = 0

[[::JJ = 0

(3a)

(3b)

(3c)

(3d)

where [[ ndenotes the difference in the values of the enclosed quantity at the interface as
one approaches from A and from B. It will be useful below to introduce the quantities
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Fig. 2(a). In-phase buckling mode.
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Fig. 2(b). Out-or-phase buckling mode.
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3. EIGENMODES

Two types of micro-buckling modes are frequently cited as arising from the com­
pression of a fiber composite. The first mode, called the in-phase (shear) mode, is shown
schematically in Fig. 2(a). This mode involves defonnations in both A and B which
are anti-symmetric about their center lines. The second mode, called the out-of-phase
(extensional) mode, is shown in Fig. 2(b). Here, the defonnation of one constituent is anti­
symmetric about its center line, and the other constituent defonns in a symmetric fashion.
Both modes are periodic in the XI-direction and can be written in the fonn

(4)

(5)

where f(X2) is defined piecewise in A and B.
In-phase and out-of-phase modes are distinguished by the functions f(xJ. Without

loss of generality, we take the layer A to defonn anti-symmetrically in both modes, thus

fA(X2) = Re [c cos 2,l,7t aX2 ]

where

SAS 23:9-C
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Then, for the in-phase mode we have

while for the out-of-phase mode we have

where

132 = RB -I +-J(S~ - 2RB+ I)
RB-SB .

(6a)

(6b)

As discussed in some detail by Hill and Hutchinson[8], eqn (2) is elliptic, hyperbolic
or parabolic depending on the values of Rand S. We concentrate on a subset of the various
possibilities by confining attention to the elliptic regime in which R > 1 and S 2 < 2R - I in
both A and B. The hyperelastic solids studied most extensively here fall into this category.
In such cases, IX and 13 are complex, and, without loss of generality, the first quadrant roots
may be used.

From continuity conditions (3), one finds the bifurcation equations to be satisfied are

Re {CIX[-(RA-SA)1X2+(RA+SA-2)] sin IXqA}

= ~ Re {df3[(RB-So)f32_(RB+SB-2)] sin f3qB} (7a)

(RA- SA) Re [c(l _1X 2
) cos IXqA] = ~(RB - SB) Re [d(1- 132) cos f3qB] (7b)

Re [c cos IXqA] = Re [d cos f3qB] (7c)

- Re [CIX sin IXqA] = Re [df3 sin f3qB] (7d)

for the in-phase mode, and

Re {clX[(RA-SA)1X2-(RA+SA -2)] sin IXqA}

= ~ Re {df3[(RB- SB)f32 - (RB+ SB - 2) cos f3qB]} (8a)

(RA- SA) Re [c(I-1X 2) cos IXqA] = ~(RB - SB) Re [d(1- 13 2) sin f3qB] (8b)

Re [CIX sin IXqA] = Re [df3 cos f3qB] (8c)

Re [c cos IXqA] = Re [d sin f3qB] (8d)

for the out-of-phase mode. We have defined the normalized wave numbers qA and qB to be

n(b-a)
qB == A

First, we consider the existence oflong wavelength modes, i.e. solutions for Aarbitrarily
large. For the case of in-phase modes, one finds the bifurcation condition in the long
wavelength limit (qA -+ 0 and qB -+ 0) to be
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(PA -1aA)aA+ (PB - ~aB)aB +2(PA - ~aA) (PB - ~aB)

+h,(PA - ~aA) (PB + ~aB) + ~ (J1.A + ~aA) (J1.B - ~aB) =° (9),

where

b-(J
h, == --.

o

On the other hand, an examination of eqns (8) reveals that a long wavelength mode is
not possible for out-of-phase modes. From a more physical viewpoint, a long wavelength
(diffuse) mode involves a homogeneous deformation which is different than the remotely
applied strain. For out-of-phase buckling, this is precluded by the condition of V2 = °at
x 2 = ±h12, since continuity ofV2 at x 2 = ±012 would force material Dto undergo a volume
change which violates incompressibility. Indeed, the combined conditions of incompres­
sibility and interfacial continuity insure that there are no long wavelength versions of
a number of different modes in layered solids[10, II]. No such restriction exists for the in­
phase mode. Whether long wavelength modes are possible gives some information regarding
the validity ofassuming that the fiber can be approximated as a beam. For long wavelength
modes, the deformation varies over a length scale which is long compared with the fiber
diameter-a condition crucial to the beam assumption. Thus, for example, one ought to
suspect results for the out-of-phase modes which are based on treating the fiber as a beam.

Another interesting feature of the diffuse buckling mode, eqn (9), is that it depends on
a and p. On the other hand, diffuse necking in a monolithic (or clad) sheet subjected to
tension depends on (f and p*. Thus, while necking in tension is independent ofthe shearing
resistance J1., provided it is finite, in-phase micro-buckling is independent of the tange:lt
modulus associated with continuing compressive deformation. This observation of the
influence of anisotropy is not evident from previous work on isotropic materials.

When the constituent materials are hyperelastic and isotropic, the shear modulus P in
uniaxial plane strain tension or compression is given by

where a is the stress in uniaxial, plane strain tension or compression, and A is now the
stretch. Since, by continuity at the interface, Ais the same in A and D, eqn (9) reduces to

(10)

Clearly, there is no long wavelength tensile mode (aA > 0, (fs > 0, A> 1), but there is a
compressive mode (aA < 0, as < 0, °< A< I).

An additional simplification is possible when the stress-strain behavior is of the form

a = kg(J..)

where the function g(A) is the same in materials A and D, and k takes on the values kA and
k B in A and B, respectively. For convenience, let k, == kAlks. Then the critical stretch A..:r is
given by

where

J..:r = 1-2'1
1+ (h, + Ilh,)"

(11)
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Fig. 3. Long wavelength (in-phase mode) buckling strain as a function of stiffness ratio.

We now make contact with the small-strain work of Greszczuk[7] who considers a
material composed of linear elastic constituents. If we take

a = ke

where e is the infinitesimal strain, then the average longitudinal stress, L, is given by

(12)

(13)

where tA and t B are the respective volume fractions. Also, the average in-plane shear
modulus, G, is given by

(14)

The normalized buckling stress LIG is then given by

(15)

In the limit of a very large modulus difference, say k, « I, Greszczuk's result, L = G, is
found to hold for all volume fractions.

4. RESULTS

First, we consider results for long wavelength modes under the assumption that
a = kg(J..). Plotted in Fig. 3 are curves of compressive buckling strain - e* as a function of
stiffness ratio k, for various volume fractions tAo The strain is taken to be the logarithmic
strain e == In ),. Only the ranges 0 < k, < 1 and 0 < tA < 0.5 are shown, since the long
wavelength limit (depending on Y[ and h,+ I/h,) is unaffected by independent exchanges of
moduli and volume fractions. A simultaneous exchange of moduli and volume fractions
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Fig. 4. Long wavelength buckling stress for linear material.

would only involve reversing our choice of which material we refer to as "fiber" and which
material we refer to as "matrix"--dearly irrelevant to the in-phase mode involving anti­
symmetric deformation in both constituents. Being unaffected by independent exchanges of
moduli and volume fractions means that the buckling strain is the same whether a given
constituent occupies a volume fraction t or 1- t. As seen below, this is not true when modes
of finite wavelength are considered. We note further that the buckling strain increases
without bound as the moduli become equal and as either volume fraction approaches zero.
Even though buckling strains of arbitrary magnitude appear possible from Fig. 3, beyond
a certain strain the equations lose ellipticity. In the hyperbolic regime, discontinuous
deformation gradients (shear bands) are theoretically possible. Assuming the linear material
response, eqn (12), and G given by eqn (14), the normalized buckling stress (fIG can be
calculated (Fig. 4). The limiting result r = G is always exceeded, and by a substantial
amount, if k, is not too different from I.

We now turn to the results for in-phase finite wavelength modes. Numerical calculations
were based on a power-law stress-strain behavior in uniaxial plane strain compression of
the form (f = keN, where k and N differ in A and B. (The results depend only on k" NA and
N B.) The buckling strain as a function of normalized wave number qA is shown in Fig. 5
for the case of in-phase buckling modes. To simulate a fiber composite, we take k, = 0.05.
Since A is the "stiffer" constituent, we will refer to tA as the fiber volume fraction. The
hardening rates have been chosen to be NA = NB = 0.2; some of the influence of this
nonlinearity is discussed further below. As seen from eqn (11), the buckling strain in the
long wavelength limit (qA -+ 0) is a minimum at tA= 0.5. Furthermore, the long wavelength
buckling strain is unaltered with respect to an exchange of volume fractions (tA - 1- tA).

The difference between, say, tA =0.2 and 0.8 appears at finite wavelengths. For the higher
volume fraction, the long wavelength mode has the lowest buckling strain. For low volume
fraction composites, a finite wavelength mode has the lowest buckling strain. As the volume
fraction is made increasingly small, there is no long wavelength mode in the elliptic regime,
but there is a finite wavelength mode. On the other hand, there are no modes whatsoever
in the elliptic regime when the fiber fraction is very high.

A somewhat different situation exists with respect to out-of-phase buckling (see Fig.
6). As discussed earlier,' there is no long wavelength out-of-phase mode. The first out-of­
phase mode to appear is offinite wavelength: for fiber volume fractions in excess ofroughly
0.2, the minimum buckling strain increases with increasing fiber volume fraction. Similar
to in-phase buckling, there are no modes in the elliptic regime when the fiber volume fraction
is very high. This result is reminiscent of the internal necking modes of a layered solid
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Fig. 5. Buckling strain for finite wavelength in-phase modes.
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Fig. 6. Buckling strain for finite wavelength out-of-phase modes.

subjected to overall tension parallel to the layering[10]. Necking-type modes were excluded
prior to loss of ellipticity when the stiffer constituent constituted a high volume fraction.

It is often stated[12] that in-phase buckling is favored at higher fA (>0.2), while out­
of-phase buckling is favored for low volume fraction composites. We give an example of
this trend in Fig. 7, in which we plot in-phase and out-of-phase buckling strains for two
different volume fractions, fA = 0.3 and 0.6. (Note that k, = 0.05 and NA = NB = 0.2.)
While the in-phase buckling curves are similar, the out-of-phase buckling curves are quite
different. Clearly, the in-phase mode is favored when tA = 0.6, and the out-of-phase mode
is favored when fA = 0.3. For the same set of material parameters we have plotted the
minimum out-of-phase and minimum in-phase buckling strains as a function of volume
fraction (Fig. 8). For volume fractions in excess of, roughly, 0.42, the in-phase mode is
favored. We note also that the in-phase mode to appear at the lowest strain is the long
wavelength mode when tA > 0.29. As the fiber fraction becomes very small, the in-phase
mode again appears before the out-of-phase mode, though only slightly. Of course, as
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Fig. 8. Minimum in-phase and out-or-phase buckling strains as a function of fiber volume fraction.

1A -+ 0, the two modes are identical. As is suggested below, however, the competition between
in-phase and out-of-phase modes can be strongly influenced by material nonlinearity.

Some of the influence of material nonlinearity is exhibited in Fig. 9. We have fixed
k, =0.05 and fA =0.5, and we have plotted bifurcation strains (both in-phase and out-of­
phase modes) vs wave number for a range of hardening rates (N;,. = NB). To emphasize a
point raised earlier, we note that the long wavelength in-phase mode depends on the
relative stiffness (k,) and not on the hardening rate (when N", == NI ). Modes of finite
wavelength, whether in-phase or out-of-phase, depend on the hardening rates. Though
curves for a variety of fiber volume fractions are not shown, it can be readily deduced by
comparing Figs 7 and 9 that the volume fraction which must be exceeded to have the in­
phase mode appear first increases as the hardening decreases.
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Fig. 9. Effect of material nonlinearity on in-phase and out-of-phase buckling modes.

Finally, we consider the possibility that the loading is not mechanical, but thermal.
This is of some importance, since tests suggested by Rosen[2] involve inducing fiber micro­
buckling via thermal loading. Say the stress is zero everywhere in the composite at some
given temperature. Let the temperature be altered. If the constituents have different thermal
expansions, then one constituent will go into tension and one into compression, in such a
way that the composite will still have zero net load on it. First, it is possible to draw
some immediate conclusions regarding the possibility of long wavelength in-phase modes.
Whatever the particular values of (J A and (JB' they must satisfy the zero load condition

With this relation, one finds that the left-hand side of the long-wavelength bifurcation
condition (10) is always of one sign; thus, one deduces that no long wavelength mode is
possible.

For kr = 0.05, NA = NB = 0.2 and fA = 0.5, calculations have been carried out for a
number of situations shown in Table 1. The results are shown in Fig. 10. There are a variety
of combinations because either the fiber or the matrix can be in compression (the other
being in tension), and, independently, either can be the anti-symmetrically deforming
constituent. We found that there are no elliptic regime bifurcations when the fiber deforms
symmetrically and is in compression.

For the purposes ofcomparison, Fig. 10 also includes bifurcation results for mechanical
loading of the same composite, in which case the stress in both constituents is compressive.
In order of increasing minimum bifurcation strain, the modes (induced by mechanical
loading) are: in-phase; out-of-phase with the fiber deforming anti-symmetrically; and, out­
of-phase with the fiber deforming symmetrically. That the last mode emerges at a sig­
nificantly higher strain means that it is the fiber that "buckles", not the matrix. Any intuition
gained from considering the results of mechanical loading appears to be relatively useless
when turning to examine thermal loading. One can say that if the fiber goes into

Table 1

Tl In-phase
T2 In-phase
T3 Out-of-phase
T4 Out-of-phase
T5 Out-of-phase

fiber in compression
fiber in tension
fiber in compression
fiber in tension
fiber in tension

deforms anti-symmetrically
deforms anti-symmetrically
deforms symmetrically
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Fig. 10. Comparison of buckling strains under thermal and mechanical loading.

compression, then the out-of-phase mode is predicted to emerge first, though at a strain
considerably higher than when the composite sustains mechanical loading. On the other
hand, if the fiber goes into tension, the first mode to emerge is an out-of-phase mode
involving buckling of the matrix. This suggests that one treat predictions based on mech­
anicalloading with caution when applying them to thermal loading.

5. CONCLUSIONS

This paper has shown that two-dimensional micro-buckling involving linear or non­
linear constituents can be treated exactly within a classic bifurcation framework. Both in­
phase (shear) modes and out-of-phase (extensional) modes are possible, though only for
the in-phase mode does there exist a mode of arbitrarily long wavelength. In the long­
wavelength limit, the buckling stress equals the composite shear modulus for a linear
material (cr = ks), provided the stiffness of the two constituents are very different. Roughly
speaking, in-phase modes are favored when the fiber volume fraction is high, while out-of­
phase modes are favored at low volume fractions. However, the transition fiber volume
fraction can vary quite widely, depending on the material nonlinearity. It was found that
inducing strain via temperature change, which puts one constituent into tension and one
into compression, results in very different buckling strains than does mechanical loading.
In any event, we share the conclusion reached by previous investigators that the compressive
stress needed to produce micro-buckling is far higher than observed compressive strengths.
Though this suggests that micro-buckling may not be the cause of compressive failure, it is
also possible that the perfect bonding ofthe constituents assumed here and elsewhere, which
puts severe constraint on buckling modes, is not realistic[12].
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